Tangent Lévy market models
نویسندگان
چکیده
In this paper, we introduce a new class of models for the time evolution of the prices of call options of all strikes and maturities. We capture the information contained in the option prices in the density of some time-inhomogeneous Lévy measure (an alternative to the implied volatility surface), and we set this static code-book in motion by means of stochastic dynamics of Itôs type in a function space, creating what we call a tangent Lévy model. We then provide the consistency conditions, namely, we show that the call prices produced by a given dynamic code-book (dynamic Lévy density) coincide with the conditional expectations of the respective payoffs if and only if certain restrictions on the dynamics of the code-book are satisfied (including a drift condition à la HJM). We then provide an existence result, which allows us to construct a large class of tangent Lévy models, and describe a specific example for the sake of illustration.
منابع مشابه
Tangent Models as a Mathematical Framework for Dynamic Calibration
Motivated by the desire to integrate repeated calibration procedures into a single dynamic market model, we introduce the notion of a “tangent model” in an abstract set up, and we show that this new mathematical paradigm accommodates all the recent attempts to study consistency and absence of arbitrage in market models. For the sake of illustration, we concentrate on the case when market quotes...
متن کاملSimulation of Implied Volatility Surfaces via Tangent Lévy Models
In this paper, we implement and test a market-based model for European-type options, based on the tangent Lévy models proposed in [4] and [3]. As a result, we obtain a method for generating Monte Carlo samples of future paths of implied volatility surfaces. These paths and the surfaces themselves are free of arbitrage, and are constructed in a way that is consistent with the past and present va...
متن کاملCredit Risk in Lévy Libor Modeling: Rating Based Approach
Preface Modeling of credit risk has become a very important and rapidly expanding field of mathematical finance in the last fifteen years. Apart from a purely academic interest, the credit derivatives industry clearly needs advanced mathematical models to objectively assess and hedge this kind of risk, which was only underlined by the recent financial crisis. Although there exist several credit...
متن کاملTime - inhomogeneous Lévy processes in interest rate and credit risk models
In this thesis, we present interest rate models and a credit risk model, all driven by time-inhomogeneous Lévy processes, i.e. stochastic processes whose increments are independent but in general not stationary. In the interest rate part, we discuss a Heath–Jarrow–Morton forward rate model (the Lévy term structure model), a model for forward bond prices (the Lévy forward price model) and a Libo...
متن کاملCompletion of a Lévy market by power-jump assets
We work under a geometric Lévy market model: the stock price process is modelled by a SDE driven by a general Lévy process (taking into account jumps). Except for the geometric Brownian model and the geometric Poissonian model, the above described general geometric Lévy market models are incomplete models and there are many equivalent martingale measures. In this paper we suggest to enlarge the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Finance and Stochastics
دوره 16 شماره
صفحات -
تاریخ انتشار 2012